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At6lract A characlerizalion of lhe dielectric pmperties in in"mensurately modulated 
phases is p m t d  First a micmrmpic description is adopted. It takes into acmunt 
the slmctuai restrictions imposed on a microsmpic scale by the superspace p u p .  The 
ma-pic optical properties are derived I" it. 'Ihe optical activity as observed in 
the incommcnsurate phass  of several compounds cannot k aplained within a plain mi- 
eroBcopic approximation. Therefore, a mesoscopic level is considered, implying averaging 
distances large with rspcct lo the basic unil d l  parameters or even the modulation 
wavelenglh, but small with reJpect 10 the size of lhc  finite clystal. The phenomenolog- 
ical appmach presented is compatible bath wilh the micrwcopic d-ription based on 
a s u p p a c e  group symmetry, as well as with the nacmrmpic one involving the point 
gruup of lhe average strumre. In lhe case considered here (onedimensional incom- 
mensurate modulation) lhe optical properties of the dielectric medium are analysed in 
l e m  of subperiodic p u p s ,  periodic along the direction of lhe modulation wave and 
homogeneous along the other two directions. I1 is shown that the optical properties 
are atfected by the incommensurability and that small changes in symmetry related to 
b o u n d a ~ ~  conditions can lead U, macrnxopic eE&. interpret the apetimental data 
more quantitatively a Jones model is applied, which describes the meSOSCOpic spatial 
dispersion of the modulated dielectric tensor to vary periodically along the modulation 
and being constant in the plane perpendicular lo it. This model is compared with the 
experimental results for the elliplicity angle x of (N(C€is)r)?ZnClr obtained for light 
propagating along the modulation. 

1. Introduction 

The determination of the optical birefringence is an important tool in the investi- 
gation of structural phase transitions. The behaviour of the birefringence provides 
information about the change of the crystallographic phase, temperature dependence 
and fluctuations of the order parameter. Optical activity is very sensitive to the pres- 
ence or absence of certain symmetry properties of the clystals. The introduction by 
Kobayashi and Uesu (1983) and Kobayashi et nl (19%) of a new type of polarime- 
ter, the high-accuracy universal polarimeter (HAW), opened the way to more reliable 
measurements of the optical birefringence and activity without being restricted to 
measurements along particular directions of the crystals. Moxon and Renshaw (1990) 
showed how the HAUP can also be used to determine linear and circular dichroism. 
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Several members of the large family of &BX, dielectrics, which show a variety of 
different modulated phases, have been subjected to measurements of the birefringence 
and optical activity. One striking phenomenon is the fact that in the incommensurately 
modulated phases the optical activity is not equal to zero. Several st~ctwes of these 
phases can be desaibed by centrosymmetric superspace groups and also their average 
structures are centrooymmetric. The optical activity is a thud-rank tensorial property 
and one should therefore expect it to be zero in these phases. 

'lb describe the optical properties of crystals one has to consider the spatial 
dispersion, this is the dependence on the wavevector of the dielectric permeability. 
The effect of spatial dispersion can be characterked by the parameter a/X = an/&, 
where a is some characteristic dimem'on having the same order of magnitude as the 
dimensions that are relevant for the polarizibdities, n is the refractive index for this 
wave, X the wavelength of the tight in the medium and A,, the wavelength of the 
tight in vacuum. In a non-modulated crystal a can be taken equal to the (largest) 
lattice constant Then, except in the neighbourhood of resonances (where n is large), 
the spatial dispersion is a weak effect: a constant dielectric tensor &', with w 
the frequency of the light and k its wavevector, can be used for the macroscopic 
electrodynamics. Due to the smallness of the parameter an/&, the spatial dispersion 
can be expressed in terms of a power series expansion in ak (k =[k I). 

In commensurately modulated crystal phases the characteristic dimension is in 
the order of the length of the unit cell of the superstructure, which is larger than 
that of the corresponding non-modulated crystal. Accordingly, the spatial disper- 
sion can become more important than in the non-modulated case, but usually the 
same macroscopic crystal optics can be applied. In the next section this theory is 
summarized. 

In incommensurately modulated crystals there is no three-dimensional lattice pe- 
riodicity, so that, in principle, tbe unit cell is infinitely large (as large as the whole 
crystal) and the assumptions made above are no longer necessarily true. Spatial dis- 
persion can become large due to the fact that a / X  can become much larger than in 
a non-modulated crystal, therefore the optical properties cannot be described merely 
by a constant cw** (although it may turn out to be a good approximation). 

A theory of the optical properties of incommensurate (INC) crystal phases has to 
take into a m u n t  the structural restrictions imposed on a microscopic scale by the su- 
perspace group. This is understood to be the (3+d)-dimensional space group, where 
d is the dimension of the modulation, that characterizes the symmetry properties of 
the INC phase (Janssen and Janner 1987). We will develop our considerations on 
the basis of the superspace gray Pcmn(OOy)(lsi) (de Wolff et a1 1981) which is 
equivalent to Pcmn(OOy')(ssl), where 7' = 1 - 7. This is the symmetry group 
for many members of the 4 B X ,  group mentioned above (Hogemorst 1986) and is 
in particular applicable to (N(CH,),),ZnCl, (tetramethylammonium tetrachlorozin- 
ate, 'IUAZC) as shown by Dam and h M e r  (1986) and Madariaga et al (1987) and 
to Rb,ZnBr, ( I i m i  and Gesi 1983, Hogeworst and Helmholdt 1988, Meekes and 
Janner 1988). This d = 1 superspace group is centrosymmetric This implies the 
presence of a four-dimensional centre of inversion in each unit cell of the structure 
that one gets by embedding the crystal in the superspace. One can avoid a superspace 
description and consider only the Fourier components of the crystal density. Then the 
superspace symmetry corresponds to symmetry conditions for these Fourier compo- 
nents 'up to a phase factor'. Accordingly, in the three-dimensional crystal there is, at 
most, one lattice plane (as d = 1) where inversion centres can occur. In the particular 
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case considered, for which the incommensurate modulation is along the c-axis such 
a plane is parallel to (a ,b) .  The presence of one more point of inversion symmetry, 
not within that plane, would imply lattice translational symmetry, in contradiction 
with the incommensurability of the crystal. One can argue that the deviation from 
centrosymmehy has to be small and that on average the structure is centrosymmetric 
Nevertheless, as morphological investigations have clearly shown (Janner el Q! 1980, 
Dam and Janner 1986) for an INC crystal structure the relevant symmetly is that of 
the superspace group, even for macroscopic properties. 

The implications of the incommensurability for the theoly are discussed in sec- 
tion 3, where the dielectric properties of INC crystal phases with Pcmn(OOy)( l d )  as 
superspace group are considered. In the last part of section 3 it is shown that all the 
implications of the incommensurability for the optical properties can be understood 
on a mesosmpic scale, which allows consideration on that level of the symmetry 
breaking effects due to the finiteness of the INC crystal. Although the symmetry 
breaking is very subtle this does not imply smallness of the effects caused by such a 
change of symmetry. A well-known example is the sometimes large rotation of the 
principal axes of the indicatrix from the orthorhombic axes in the case of a very small 
monoclinic deviation. In section 4 a model is presented that takes into account, for 
appropriate experimental conditions, the local symmetry compatible both with the 
superspace group and with the global space group symmetry of the average structure. 
The symmetry breaking effecls are then related to a choice in boundary conditions. 

In sections 5 and 6 the optical activity in the INC phase of TMAZC is discussed on 
the basis of the present approach. The main features of the optical characterization 
reflect the results that can be obtained on a microscopic level as well. No complete 
microscopic derivation is given, so that the present interpretation of the data still 
remains a phenomenological one. 

2. Spatial dispersion in non-modulated crystals 

In this section we will treat a crystal as an unbounded, time independent, linear, 
spatial inhomogeneous optical medium. The dependence of the displacement field 
D(w,T) on the electric field E ( w , r )  with frequency CLI is given by the material 
equation 

D ( w , r )  = &‘(r,r’) * E(w,T’)dr’.  J 
Agranovich and Ginzburg (1984) have shown that, due to the translational symmetry, 
we obtain from (1) in reciprocal space the convolution 

D ( w , k )  = E ? , k ( h ) * E ( ~ , k - h )  
h€h’ 

where D(w, k) is the macroscopic dielectric field with wavevector k and frequency 
w, E(w,  k - l a )  and .“vk(h) are the Fourier componenh of the electric field and 
the dielectric tensor, respectively. The wavevectors h are elements of the reciprocal 
lattice A* of the crystal. 

Equation (1) can be approximated by considering the local dependence of the 
displacement field D ( w , r )  on the electric field E ( w , r )  and taking into account the 
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contribution due to the gradient of the electric field. Note that this is not a 'bylor 
expansions appmxhation, because that would involve more terms. Then equation (1) 
reduces to 

D(w,r) = ( c w ( r )  + r"(r); V,) E ( w , r ) .  (3) 

The local dependence of D(w,r) on E ( w , r )  is given by the symmetric second- 
rank dielectric tensor c W ( r ) ,  the infini!esimal-non-locol dependence by the third-rank 
gyration tensor yw,  which is antisymmetric in its first two indices. In reciprocal space 
(3) leads to 

D(w,k) = P ( h )  E(w,k  - h) + i ( Q ( h )  * k) . E(w, k - h) (4) 
h€A* h€A* 

where for P ( h )  and ?w(h) higher order tenns in k are either neglected or im- 
plicit. Note that, comparing (2) with (4), the infinitesimal-non-local approximation is 
legitimate if we may approximate 

P * ( h )  = P ( h )  + i ? W ( h ) .  k. ( 5 )  

This is valid if the wavelength of the macroscopic field E(k) is long with respect to 
the microscopic fields E(k - h) with h # 0. For visible light this is, almost always, 
the case. 

21. Local approximation 

Let us investigate the material equation in the local approximation 

D ( w , r )  = c w ( r )  - E ( w , r ) .  (6) 

This microscopic dielectric tensor is invariant for the space group symmetry of the 
crystal, in particular for the translations of the lattice A. Therefore, we write instead 
of (4), dropping the explicit notation for the dependence on w 

D(k  + h) = qh). E ( k )  + E(h - h') . E(k+ h'). (7) 
h'EA.,h'#O 

We assume that the medium possesses no extemal charges and no external currents 
with short-wavelength Fourier components. Then, we derive from the Maxwell equa- 
tions for the short-wavelength Fourier components 

Ik f hI2 E ( k  + h) - (k + h ) ( ( k  + h). E(k+ h ) )  = g D ( k  CZ + h) (8) 

where c is the velocity of light in vacuum. Restricting to the transverse component 
E,(k + h) of E(k + h), we get 
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where 

Ik + hl+hl> 2 r / a  >Ill (10) 
is assumed, with a a characteristic length in the order of the lattice periodicity and 
A, = 2xc/w the wavelength in vacuum of the incident light. We can conclude tbat 
the transverse microscopic electric fields E,(k + h) for h # 0 are small compared 
to the macroscopic field E(k), because aa/# 4 (except for resonances in w, 
where c(h) can become large). 

The assumption of no extemal fields with short-wavelength Fourier components 
implies that the divergences of the short-wavelength displacement., fields are zero. 
Using (3, this yields 

(k + h) * q h )  * E ( k )  + (k + h) * q h  - h') (k + h')Eii(k + h') = 0 
h'EA*,h'#O 

(11) - 
where (k + h) and (k + h') are unit vectors along k+ h and k+ h', respectively. We 
have neglected the fields EL(k fh) for h # 0 and we obtain a set of equations (one 
equation for each h # 0) that relates all parallel electric field components Ell(k + h )  
for h # 0 to the macroscopic field component., E(k). This set is formally infinite, 
but it can be truncated since for larger reciprocal wavevectors h the corresponding 
dielectric Fourier components q h )  become very small. The truncated set leads to a 
unique solution only if the determinant of tbe homogeneous part is unequal to zero; 
if it is zero additional electromagnetic excitations are possible in the ctystal, but we 
wiU not consider these here. Substituting the relations for Ell(k + h) into (7), we 
h d  a relation between D ( k )  and E ( k )  

D ( k )  = q0). E ( k )  + q - h ) .  Ell(k + h)gfck. E(k). (12) 
hEA*,h#O 

If we restrict the summation over A* in this equation to the truncated set, we obtain 
an expression for ck .  It gives the dielectric response of the crystal to an incident 
field with wavevector b and the corresponding dielectric tensor is invariant for any 
transformation R of the point group K of the crystal 

ck = R @  kRk. (13) 

Normally speaking, as k is small, so also the k-dependent part of ck  is, and then this 
equation reduces in good approximation to the usual invariance condition (Nye 1985) 

c = R@ Rz. (14) 

22 Infiitesimal-non-local approximation 
The phenomenon optical activity is understood to be caused by the non-local depen- 
dence of D(+) on E(r ) .  For light waves in the optical region in insulators this is 
only a small effect and can therefore be described by (3) 

D ( + )  = (e(+) + -/(+I . a,). E(+) .  (15) 
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For most of the (non-modulated) insulating materials it is enough to consider a single 
plane wave 

D ( k ) = ( c * + i y * - k ) . E ( k )  (16) 

' where E* is the symmetric second rank dielectric tensor from (15) and yk is a third 
rank tensor, which is antisymmetric in the first two indices ( - y i j l  = -yji,), that 
describes the gyrotropy (optical activity) of the crystal (see Sommerfeld 1959 or Born 
1933). This tensor is invariant for the point group symmetry. This means that one 
has 

for all orthogonal transformations R of the point group K of the crystal. The k- 
dependence of y* is very small and is therefore usually neglected. Then (17) reduces 
to 

y = R @  R @  Ry. 

In summary, we can state that, within the assumptions of the description pre- 
sented, the optical properties are governed by the point group symmetry of the 
crystal. One can also use the concept of the inverse dielectric function to come to 
the same conclusion (see Pick 1970, 1990). 

3. Spatial dispersion in incommensurately modulated crystals 

3.1. Microscopic descriptwn 

3.1.1. Local approximarion. The optical properties in the INC modulated phase can be 
derived along the Same lines as we did for the non-modulated crystals. We will assume 
the crystal to respond linearly and time-independently (i.e. far from resonances). 
The space-dependent dielectric tensor e"(.) in (6) must now be invariant for the 
superspace group Pcmn(OOy)(Isi)  that describes the symmetry properties of the 
INC phase. 

In the INC phase equation (6) remains valid within a local approximation. The 
wavevectors h can be characterized by four integral indices (h ,  k , l , m )  according to 
h = ha* + kb' + IC' + mq and are therefore elements of M', which is a 2-module 
of rank 4 generated by U*, b', c* (spanning the reciprocal lattice A' of the basic 
structure) and q = yc' (the modulation wavevector) (see Janssen and Janner 1987). 
In the INC phase equation (7) takes the form 

D ( k + h ) = E ^ ( h ) . E ( k ) +  Z ( h - h ' ) . E ( k + h ' ) .  (19) 
h'EM*,h'#o 

The spatial dispersion in the INC phase can be characterized by a small number 
of Fourier components of the dielectric tensor that noticeably influence the optical 
propeaies. For h = 0 we have the macroscopic tensor E^(O), which is the dominant 
term if spatial dispersion is negligible. For h 0 we only have to consider short 
wavevectors hi ( ]h i  I small). In the INc phase as above, WavevectorS of the form h = 
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( 0 ,  0 ,  I ,  m) can have long wavelengths for suitable choices of 1 and m. However, for 
larger indices 1 and m, less structural information will be camed by the wavevector, 
and hence, the corresponding Fourier tensor component Z ( h )  represents only a minor 
contribution. Furthermore, the influence of a dielectric Fourier component E(h) to 
E,(k+h)  is in a first approximation proportional to the square of the corresponding 
wavelength (see equations (9) and (24)-(29)). Thus, the wavevectors with relatively 
long wavelengths and low indices are expected to dominate the optical properties. 

For a given h = ( h ,  k ,  I ,  m )  E M' we can derive which tensor elements ~ ; ~ ( h )  
of the corresponding tensorial Fourier component are allowed by the superspace 
group G, = Pcmn(OOT)(lsi). These elements can be embedded as associated 
to reciprocal lattice vectors hs in the four-dimensional lattice E', with the same 
integral components ( h , k , l , m ) .  We can write hs = (hE,hhl), with h, = ( h , k , l )  
defined in the threedimensional demal subspace and with h, = ( m )  defined in the 
one-dimensional infernal subspace, perpendicular to the external one. The tensorial 
Fourier components are also embedded, according to C(hs) = E(h). A general 
element gs E Gs can be written as {RE, RI I is), with RE the threedimensional 
orthogonal transformation and RI the internal transformation of the fourdimensional 
superspace transformation Rs and tS = (tE,tI) the superspace translation (Janssen 
and Janner 1987). The invariance of ;(h) with respect to gs is given by (Janner and 
van Beest 1983) 

C(h) = RE @ REe(REh)e(RShS)'fs. (20) 

In table 1 we see that the different parity conditions for h, k, 1 and m lead to 
different scalar products ( G h , ) .  tS, and so different choices of h = (O ,O,  1 ,  m) give 
rise to different selection rules (20) for the corresponding elements Zij(h)  of the di- 
electric tensor (see table 2). Note that the dielectric tewrs are given in a coordinate 
system that coincides with the present orthorhombic c~ystallographic axes of the basic 
structure (the structure in the absence of the modulation). The contributions due to 
different Z(h) occur in (19) as a linear superposition. Therefore, it is possible to take 
for every group of wavevectors with the same parity one representative Fourier wave 
h, find the contribution of each corresponding representative F(h) and then sum 
over all their effects. The choice of these representatives depends on the modulation 
wavevector. We will do this explicitly for TMAZC in the next section. 

Tsbk 1. The scalar pmducls ( h k s )  . ts for the elements gs of Gs. 

{c* ,  1 I $ O $ O )  ( - k + l ) n  { z , , i l  LOLO} ( k  - 1)n 
t9 ,1  lo;o;) (-k+ m b  { z # , i l  o';o';} ( k - m ) r r  
{ n z , i l L I L L }  2221 ( k + k - I - m ) n  { Z Z > 1 ~ ~ $ $ ~ 1  ( -h  - k + I + m)n 
{l , l  I O O O O )  0 {i,i I oooo} 0 

Suppose we have the representative Fourier components with wavevectors hi = 
(0 ,0 ,1 ,m)  with l / m  = oddlodd for i = 1 ,  l /m = odd/even for i = 2 and l / m  = 
even/odd for = 3. Furthermore, we have the constant contribution with h, = 0. 
In table 2 one finds the expressions for the corresponding dielectric tensors ;(&hi), 
i = 0,1,2,3, which are allowed by G,. Fourier components with parity l / m  = 
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Table 2. The form of the tensor c ( h )  depends on the 1 and m indica of h = 
( h ,  k, 1 ,  m). The corresponding subperiodic p u p s  Gi arc given. 

hi ho hi hi h3 

eveweven will not be considered, because their effect is difficult to distinguish from 
the dominant part of q0). Note that F(h) = E^(&) follows from c ( r )  being 
real in a lossless medium and because of the total inversion symmetry element of 
the superspace group. The seven wavevectors &hi with i = 0 , 1 , 2 , 3  are (by the 
described procedure) the smallest wavevectors with structural importance. 'lb obtain 
the propagating fields, we will restrict from now on h E M' to la = &hi with 
i = 0,1,2,3. Brms of the form q h i  - h j ) E ( k  + h j )  with i , j  # 0, i # j will be 
neglected, while they do not contribute directly to the macroscopic held D(k) .  From 
(8) and (19) we derive the Fresnel equations 

(E^(O) - F(nzkppi)). E(k &hi)  + q & h i )  . E ( k )  = 0 (21) 
for i = 1,2,3,  and for h = 0 

where n = ck/w,  p i  = chi j w  and 

F ( n *  p i )  = I ~ & P ;  I' 1-(n  * p i )  @ (n*pi) (23) 
1 being the identity. 

From equation (21) we can calculate the microscopic fields E(k & hi), and with 
these the electric Eelds EZ+'(r) that can propagate along given direction ii =I k I 

For k ( ( i  

(U = 1,Z). 

+ cc 

with n2 = EP) given by (32) and 
2( 72' - E Q ) C ~  COS(h2 . T) 

(n2  - E ~ P ;  - cl) - n2p; 
2€,COS(h3 * r) 
P: + n2 - 

2inp2agsin(h2 . r )  
+ 

(n2 - E 3 ) ( p ;  - E 1 )  - n2p; 

E"'(r) = 
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with n2 = e$w) given by (32). 

E"(.) = ' E!eik'' + cc 

2eg  c o s ( h Z .  r )  
P: + n2 - cl 

2 ( n 2  - E ~ ) E ~ c o s ( ~ ~  * r )  
(n2  - E ~ ) ( P ~  - 4 - n2pi  

2inp3e,  sin(h3. r) 
+ 

(n2 - e3)(pi - E 2 )  - nZp2, 

with n2 = er) given by (33). 
And for klli 

PI) + €3  - + P t )  . + cc ($- 2 2 

1 
2s5(p :  + n2 - a2) cos(hl . r )  - 4inp1e5sin(hl. r )  

- 2 9  cos(h2. T )  - 2 i 9  sin(&, * r)  
a E 

e3 €3 

E""(r) = 

(28) 
(001) . with n2 = ell p e n  by (34) and 

. E:eik" + CC 

(29) 

2 e 5 ( p t  + n2 - ~ , ) c o s ( h ,  . r )  - 4 inp l~ , s in (h l .  r )  
(.2 - P:)2  + E i  - q ( n 2  + Pf) 

E - 2 4  cos(h3. T )  ( E 3  

EiS2(r) = 

with n2 = e r )  given by (34). 
In the case that all p i  become large, and so k + h = h 11 2, the transversal 

components of the microscopic fields E,(k + h) go to zero as p;' as prescribed by 
(9). The longitudinal microscopic fields Ell(k+h) go either to zero as p;' or remain 
constant (independent of p i ) .  

3.1.2 Infiite.simal-non-loca[ approximation. In the material equation 

n(T) = (4.) + Y(T) . V,) . E(T) (30) 
r(r)  is also invariant under the superspace group symmetry. These symmetry re- 
strictions are worked out for the Fourier tensor component$ r(h), with h E M', of 
the gyration tensor by Meekes and Janner (1988), for the different setting, however, 
Pcmn(OOy)(ssi ) .  The corresponding solutions of the Fresnel equation can be de- 
rived as above. These expressions have not yet been worked out and are not needed 
in the present analysis of the incommensurate crystal optics. 
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3.2 Macroscopic description 

3.21. Local approximation. From equation (19) we derive the macroscopic displace- 
ment field 

Substituting the previously obtained fields E(k & hi)  into (31) gives the dependence 
of D ( k )  on E(k) for different k. This is described by a kdependent constant 
macroscopic dielectric tensor ck = E* ,  with a = (ss, sy, sz) a unit vector along k, 
via D ( k )  = c'E(k),  the wavelengthdependence being implicit. We get diagonal 
tensors with elements 

In general the additional fields E(kfh)  will have wavelengths that are short with 
respect to E(k). Then, the refractive indices p ,  are quite large with respect to n, 
6, 6 and 6. Only if the modulation wavevector is different from a rational 
approximant I/m with I, m small integers or if the modulation amplitude becomes 
negligible, the effective dielectric tensor becomes k-independent 

- 2€92/€3 0 
c = (  0 €2 - 2c;/e3 :) . 

0 0 E 3  

(355) 

Fousek and Kroupa (1986), who consider a special case, obtain a correction in the 
refractive indices that is equivalent to 2&:/c3 and a minor correction which in our 
description is given by 2 ~ : / p $  This last term appears in (32)-(34) by assuming p ,  
large and neglecting terms of order smaller than p;'. The effect of both contributions 
is the same in our derivation and in that of Fousek and Kroupa. 
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In the case that L is k-independent, the invariance relation (20) for the superspace 
group reduces to 

c = R E @ R E e .  

This means that L is invariant for the external point group KE, which is a subgroup 
of the threedimensional point group K of the average structure (Janner and van 
Beest 1983). Othenvk we have 

e* = RE @ RE&'. (37) 

So we see that c" is invariant with respect to the group of k denoted by Kk, which is a 
subgroup of the threedimensional point group KE. The group KE is not necessarily 
aproper subgroup of K and in m a t  cases is simply K. In particular for TMAZC one 
has KE = K = mmm. 

3.22. Infiitesimal-non-local approximation. For the tensorial Fourier components of 
the position-dependent third-rank gyration tensor 7(r) of (3), one can now derive in 
an analogous way, as for ck in the local approximation, that the resulting macroscopic, 
mnstant gyration tensor yk is also invariant for K, 

This equation, as well as the corresponding previous ones, shows that the direction of 
k has a symmey-reducing effect as compared to the k-independent tensor. For in- 
stance if we take on the non-modulated orthorhombic lattice of IMAU: k = (k, O,O), 
then we. must consider the group of k given by Kk = 2". For this point group 
we can derive from (38) that yk k = 0 and therefore it gives no effect (see (4)). 
%king k = (k,,O, k3) we have correspondingly the point group Kk = m y ,  which 
allows yt3, = to be unequal to zero. But, as shown by Meekes and Janner 
(1988) the optical activity parameter is given by 

with e . .  = 1 for (ijl) an even permutation and eSjr = -1 for an odd permutation, 
s the unit vector along k and implicit summation convention adopted. Therefore, the 
contribution of y:31 to the optical activity is, as given by (39), again zero. If we take 
general k = (ICl, k2, k3) and thus Kk = 1, all components 76, can differ from zero 
and can, in principle, give rise to optical activity. This effect is expected to be very 
small, because the first term unequal to zero in a power series expansion of y k  in 
k is quadratic in k (as KE = mmm). Nevertheless, for m c  optical activity has 
been detected even for directions like k = (k, 0,O) and k = (k,, 0, k3) (Dijkstra et 
al 1992) so taking into acwunt the spatial dispersion of Y* does not really help. 

In the next paragraph we will see that the boundary surfaces of the crystal will 
allow the appearance of a gyration effect, as already suggested by the symmetry 
breaking considerations made in the introduction. 

111 
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3.3. Mcsoscopic description 

In both cases considered io the previous seaion the optical non-homogeneity of the 
sample giving rise to the spatial dispersion, is expressed in terms of two macroscopic 
tensors cL and y*, allowed by the superspace group Pcmn(OOy)(lsi). Although 
we have taken into a m u n t  the effects of the spatial dispersion due to the modulation, 
as already said, these macroscopic properties do not explain the presence of optical 
activity in the INC phase. Fbr this reason we consider a finer description invohrmg 
averaging over distances large with respect to the crystal parameters, but small with 
respect to the size of the finite crystal, and we will call that a mesoscopic scale. 
The symmetry of the resulting medium has of course to be compatible with the 
superspace group of the modulated structure as well as the point group of the medium 
in a macroscopic description. In that case the non-homogeneity can be reduced to 
a periodic placedependent dielectric tensor, with componena still compatible with 
the underlying superspace group conditions. Furthermore, both the finiteness of 
the crystal and the spontaneous symmehy breaking associated with a choice of the 
boundary conditions have to be considered. In this section and the next, we will 
discuss how to come to a consistent description. We will restrict to the case k 11 2. 

3.3.1. Local upproaharton. Assumption (lo), which states that h > k for all relevant 
h E A*, is no longer valid in the INC phase (for all h E M*). Now let us hvesti- 
gate what will happen if we have a number of long-wavelength Fourier wavevectors 
h,, . . . , h, E M' for which t h s  assumption does not hold. This implies that aU 
these vectors are along the incommensurate diection (ie. parallel to C O ) .  This set 
of wavevectors is such that for all hi in this set there is a hj = -hi within it. We 
rewrite (11) for all h E M', h # O,h,, . . . ,hv,  taking for the mesoscopic fields 
E(k + hi)  also the perpendicular field into account, as 

where the prime denotes the restriction of the summation to elemenrs h' # 
0 ,  h,, . . . , h, and 

*_ 

S*(h,h') = (k + h )  . Z(h - h') . (k + h'). (41) 
Let us introduce N as the total number of reciprocal lattice vectors in M' (which 
is in fact infinite for an infinite crystal). SO we obtain N - U - 1 equations with 
N - v - 1 microscopic field components Ell(k + h'). This means that we can write 
all Ell(k + h,), j = v + 1,. . . , N, as an expression containing only the macroscopic 
field E ( k )  and the mesoscopic fields E(k t hi) ,  with i = 1,. . . , U. If we substitute 
these expressions in (19) we get the set of equations,with i = 1,. . . ,U 

Y 

D(k  + hi)  = ='(hi). E ( k )  + s * ( h i - h j ) . E ( k t h j )  

Y (42) 
I=1  

D ( k )  = c * ( O ) * E ( k )  + C c * ( - h j ) . E ( k + h , )  
,=1 
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'where the contributions of the microscopic fields are now implicit in the k-dependent 
mesoscopic dielectric tensors ch(hi) .  From the original set of N vector equa- 
tions (19), N - l - Y have now been eliminated and Y + l equations remain, which 
represent the set of Fresnel equations for the present case (in an analogous way as 
occurs in the microscopic description of section 3.1). In  these mesoscopic material 
equations the dielectric tellsors ~ ' ( 0 )  and &'(hi) still have to be invariant with re 
spect to the superspace group (taking properly into account the presence of the light 
wavevector k) because a correct averaging never decreases the symmetry. 

Suppose in the INC crystal the existence of one distinguishable mesoscopic coher- 
ence length 1,; its nature will be described in the next section and further on. In M' 
we can find Fourier wavevectors of the type hi with i = 1, . . . , v and of all ditferent 
( 1 ,  m) parity conditions that correspond to penodicities in the crystal which are very 
close to I,. So that after averaging this dense set of Fourier wavevectors, one arrives 
at three effective mesoscopic Fourier wave vectors 0 and &ho with I h, I= 2?r/I,. 
For this description the microscopic indices h, I C ,  I and m are no longer meaningful. 
Therefore, instead of (42), as the hi are all parallel to the Z-axis, we can write in 
direct space a material equation (restricting to a sinusoidally modulated dielectric 
tensor) 

with q5 a constant phase, 1, no more small with respect to the wavelength of the light 
and 

The tensom qi describe that part of 1) that corresponds to the tensor form in table 3 
for the listed hi, and their strengths depend on the choice of I ,  and the modulation 
In the next section we will describe the optical properties on the basis of 0. Equation 
(43) can be treated in formally the same way as we did for the microscopic description. 

Table 3. "he phases occurring in wAZC The phase transition temperatures, the mcdu- 
latioo wavevector (q = rc') and the space groups are given. 

Phase VI V IV 111 I1 I 

< 161 < 181 < 276.5 < 280 < 297.6 > 297.6 

Kobayashi (1990) showed that in the INC phase a place-dependent, complex order 
parameter exists that gives rise to helical structures in the INC phase. From (43) one 
sees that this complex order parameter can be interpreted as being the fundamental 
Fourier component with wavevector h, of ~ ( 2 ) .  
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3.3.2 InfinitLsimaZ-non-local appmrimarion. We can treat the optical activity in the' 
same way as we did with the dielectric tensor and obtain an equation that is similar 
to (43).We then need the same invariance properties as those derived by Meekes and 
Janner (1988). We will not do thii here, because the inhomogeneity of the dielectric 
properties as described by (43) can already give rise to optical activity as we will see 
in the next section. 

4. Modulated dielectric tensor optics 

The modulated dielectric tensor c"(z) that occurs in the mesoscopic material 
equation (43) is homogeneous with respect to translations in the (a ,b)  plane and 
inhomogeneous along c Its spatial average ~ " " ( z )  has the point group symmetry 
mmm. The Euclidean symmetry of Pa( z )  is not given by a space group nor by a 
superspace group nor by a point group. Indeed it is periodic along c (with periodicity 
1,) and is constant along a and b. The symmetry is that of a rank two tensor field 
invariant with respect to a subperiodic group. The subperiodic group has analogous 
propelties as a space group (Opechowsld 1986), but instead of a threedimensional 
lattice it is characterized by continuous translational symmetry along two directions 
a and b and a discrete one along e. The anisotropy related to the orthorhombic 
symmetry in the (a ,  b) plane is still present. The further concepts of point group and 
non-primitive translations still apply. In the present case where the point group of 
c"(z) is mmm, one can show that there are four inequivalent subperiodic groups 
denoted as P,mmm, P,ccm, P,cmm and P,mcm. The generators of P,mmm 
are then written on the basis A = a, B = b a n d  C =&,e/ IcJ 

( t , O O ) ,  (ot,o), (001), m,, m y ,  m, (45) 

for infinitesimal 1, and t,. For P,ccm instead of m, one now has c, = {m, I OO;} 
and instead of my one has cy = {m,, I OOi}, and so on for the other two subperiodic 
P U P S .  

Each tensor q, (i = 0 , .  . . ,3) is invariant with respect to one of these subperiodic 
groups G, as denoted in table 2. Therefore, every tensor q, has a different symmetry 
reducing effect. 'lb illustrate this we will work out the contribution of ql. 

The coordinates of equivalent positions of P,ccm, modulo the onedimensional 
lattice translations (O,O, n), are (in a general position with point symmetry 1) 

Special equivalent positions with maximal point symmetry are at 

o,o,o O,O, $ with point symmetry 2/m (47) 

O,O,$ O,O,$ with pointsymmetry222. (48) 

and at 

This situation is analogous to that one finds in the space group Pccm (Hahn 1983). 
The difference from the optical point of view is not so much due to the lattice 
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translations along a and b, but to the fact that positions with different point symmetry 
are for visible light at microscopic distance in the space group case ([cl< A), whereas 
that is no more the case for the subperiodic group (la is not small with respect to 
A). For that reason the optical symmetry of the crystal, in a mesoscopic description, 
depends on the exact position of (001) boundary surfa.ces: at a general position, at 
I = 0 or at z = 1/4 (for an origin at i). Only the last two cases are considered, 
because associated with a maximal point symmetry. 

A rank-2 symmehic tensor Aeld, invariant with respect to P,ccm, is mnstant 
along 2̂  and 5, periodic along 2 and has with Fourier wavevectors K = Lh, = 
(2rL/ l0)2 ,  the Fourier components q ( K )  satisfying the symmetry condition 

(49) RK).u( R )  q (K)  = R 61 R6( RK) 

for elements g = {R I a(R)}  of P,ccm. This gives for 5 the possible forms 

0 0  

0 € 5  
q(L)= (2 0 :) forLodd.  

0 €8 

The modulated dielectric tensor described by (51) is illustrated in figure 1. 

222 

P@re 1. The variation in spacc of the modulated dielectric l m r  cmW(z). 

Several som of boundary surfaces can play a role in the optics of an incom- 
mensurate crystal. Let us assume these are nothing else than the faces with indices 
(00Zm) which are all parallel to (001) of a finite crystan, and that these faces are at 
equivalent positions. In that case the optical properties of the medium change with 
the exact positions of these (001) boundary surfaces. In a situation like this one also 
observes the case of a set of optical slabs. We will illustrate with a Jones model how 
a specific choice of boundary surfaces at equivalent positions with point symmetry 
222 can give optical activity. 
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4.1. The square-waveform Jones model 

In a previou paper (Dijkstra 1991) a Jones model is presented that treats the ql 
part of the modulated dielectric tensor c"( 2). It describes the crystal to consist 
of homogeneous slabs: each slab on be characterized by its two eigenpolarizations 
which are linearly polarized states oriented along directions deviating from the or- 
thorhombic axes of the average structure by azimuths of p and -p  altematingly. 
The polarization state of a plane wave with kllz after two subsequent slabs will be 
elliptically polarized. We will describe the model briefly here. We write for em-( z )  
only the transversal components and restrict to the ql contribution. We approximate 
the cosine dependence on z by a square waveform and then partition the medium in 
slabs, labeled by n, with thickness &/2. This gives 

The eigenmodes in slab n are linear polarization states with azimuths p*, given by: 

The retardation r of one slab becomes: 

where A, is the wavelength of the incident light, A n  = f l - - ~  m $ ( E +  - €-)/E 
is the birefringence of the slab and E +  and E -  are the eigenvalues of e""(.): 

So we get: 

The o p t i d  properties of such a system can be calculated by Jones m a t h  calculus. 
The whole crystal is built up out of the same pairs of two subsequent slabs: the optical 
unit Cells. The retardation of one optical unit cell is (considering only the p = p+ 
state and r .=g 1) 

A = Z I ' c o s Z p =  ~ ~ ~ c o s 2 p .  (56) 
n A 0  

This gives the birefringence: 
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The crystal has the same eigenpolarizations as one optical unit cell. Those are 
elliptical eigenpolarizations (with the main axes along the a- and b-direction of the 
crystal), with ellipticity angle: 

4 SAXo 7 r 1 ~  d m s i n 2 p .  (58) 
r x =  - s i n 2 p =  - 

The optical properties of an optical unit cell are given by x the ellipticity angle, for 
k 11 c. This can also be described by a gyration vector y(*) that points along the 
e-axis. The parameter of optical activity is given by 

where again s is the unit vector along k (see Dijkstra 1991 and Bom 1933). In this 
case yp) becomes (see (39)) 

We can derive from (58) and (59), using k3 = 27rfi/X0, p1 = X o / I o  and taking 
tan 2x = 2x 

G = s y(') = RAn(001) tan 2 x  

72' = Y123k3. (60) 

(59) 

7123 = 32R2p, ' 0  (st -e-)2sin4p. (61) 

Normally, the second-rank pseudo tensor gij is used to descnie the optical a& 
tivity. The optical activity discussed here is given by the tensor element: 

(62) 
7r 

933 = 7 3  ( k )  '3 - - y1Z3s3k3 = Isiip, ( E +  -c-) 'sin4p. 

The gyration effect is constant for the whole crystal. In the model, the point group 
symmetry mmm is reduced to 222, which allows ylZ3 to be non-zero (see (38)). The 
symmey breaking is caused by the fact that the surface boundaries of the crystal 
are located at equivalent Wckoff positions with point symmetry 222. There is also 
another optical configuration possible: it is obtained by substituting p - p  in all 
optical unit cells. The crystal thus obtained is the enantiomorph for which x, yr),  
ylZ3 and g33 change sign. In principle, the two configurations are equally probable. 
In a specific single crystal, however, only one of them will, in fact, OCCUI due to a 
spontaneous breaking of symmetry associated to small accidental defects. 

5. Application to TMAZC 

In table 3 the different phases of TMAZC are listed. In figure 2 the temperature- 
dependence of the modulation wave vector q = yc" in the phases 11, I11 and IV is 
plotted. In the INC phase y varies from 0.420 to 0.408 (Madariaga et nl 1987) and 
then jumps at the lock-in phase transition temperature to 2/5. 

In figure 3 the most dominant reciprocal lattice vectors are plotted. They have 
the lowest indices (h = IC = 0 and 1 and m within the circle around the origin) 
and their ratios Z/m are close to -y (within the slice around the yline in the 
figure). With these reciprocal lattice vectors long wavelength Fourier mmponenls of 
the dielectric tensor are connected. For different temperatures the orientation of the 
y-line in figure 3 changes. For certain temperatures y goes through rational values 
l /m with low indices I and m; for instance y = 5/12 at T # 290 K However, it is 
not possible to say which specific components will be responsible for certain optical 
phenomena observed; in our phenomenological approach that information follows 
from measurements. 
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t 

0.41 

113- 

A0 2i)5 GO 265 T(K) 
Fmre 2. The value -( of (he modulation wnre vccm q = ye* in the inmmmensumte 
ph- of ~MAZC as a function of tempnature (from Marion 1981). The plotted line is 
a linear 61. Ihe value 7 of the vector q = -(c' at a function of temperature ( h m  
Marion 1981). 

FIpre3. A (O,O,l, m) slice in the r s i p m l  spcc M'. The moDt important rcciproeal 
lattice vsCtOn h = (O ,O,  I ,  m) ( I ,  m) E M' are lhav with low indica 1 and m 
(i.e. inside a s p h m  around (0.0)) and that are cloK to the y-line (the line 1 = -ym) 
Of n.iAzc 

6. Optical activity of TMlrZC 

In figure 4 we find the ellipticity angle measured with the HAUP for a sample cut 
perpendicular to c. Dijkstra (1991) already reported these measurements, but in the 
fitting procedure the so-called 6Y-error was not eliminated properly. This 6Y-error 
is caused by the intrinsic eccentricities of the rotation stages on which the polarizers 
of the HAW are mounted. The elimination of this error is performed now by the 
method described by Dijkstra e1 a1 (1991) and Mown and Renshaw (1990). From 
Dijkstra (1991) we know that at To = 288 K An(001) becomes zero. In figure 4 we 
see that x a at this temperature. In (58) we see that An(001) = 0 implies 
that p = n/4, which gives with (53) that 4 4  B (cl - c2)*.  men, from equation 
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(59) at To (from figure 4) we derive 

1 4AX 
E .ox- = 0.002. 

5 A 0  A 

-0.31. , , , ," j 
-0.5 

280 290 300 
TEMPERATURE (K) 

Figure 4. The ellipticity angle x in phases I and II  of Ih(ruc, measured along the 
(Wl~direclion. Open circles refer to the measurements with the electric 6eld polarized 
along a. closed circles refer to those with the electric field polarized along b. 

So we see that the influence of cg can be quite significant and that 1, is in the 
order of A,. Then, we can conclude that the major effect of the spatial dispersion 
due to the incommensurate modulation occurs in the optical activity, and is vely 
diiiicult to recognize in measurements of the birefringence. The effect can also be 
described by a constant effective yeu = ylZ3 (or equivalently by the element g33 of 
the second-rank pseudo tensor), which is allowed by the point group 222. This point 
group allows yZs1 and y312 to be non-zero too. These can give rise to optical activity 
along the oaxis and along the &axis, respectively. 

In the INc phase gm goes to zero at T, (Dijkstra er a1 1992), but gI3 remains 
unequal to zero (Kobayashi el al 1986, Dijkstra and Janner 1990) due to the presence 
of discommensurations in which the P d l n  symmetry of the lock-in phase is already 
present. If we substitute some of the chlorine by bromine in TMAZC it locks in 
into a monoclinic phase with q = c'/3 and P112,ln symmetry (see Colla er nl 
1984). Dijksffa and Janner (1990) have measured the optical activity along the (101) 
direction of such a solid solution (0.77 Br versus 3.23 Cl). The optical activity along 
this direction is given by: 

G(101) = g 1 1 c o s 2 ~ + g , 3 s i n z ~ f 2 g 1 3 s i n ~ c o s ~  = O.36gl1+ O.64g3,+0.96gl3 

where q5 = 53O is the angle between the (101) direction and the a-axis of the crystal. 
G(101) is unequal to zero in the INC phase, but goes to zero rapidly on approaching 
the monoclinic lock-in phase, as should be expected because of the fact that the lock- 
in phase for this material is centrosymmetric and no discommensumtion contribution 
to gI3 can occur. 
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7. Final remarks 

The presented description show that the optical properties are affected by incommen- 
surability and that small changes in symmetry related to boundary conditions can lead 
to macroscopic effects. This in itself is not strange. We can compare this situation 
with the ferromagnetism in iron at room temperature. For most of the properties, 
iron can be descnied as cubic. Only very small deviations from this cubic symmetry 
allow the very large ferromagnetic properties. Furthermore, we see that boundaries, 
defects and/or impurities determine the actual direction among the cubic equivalent 
ones of the magnetization of the iron. The situation for the optical symmehy of the 
INC crystal is comparable. A certain point symmetry of the boundary surfaces of the 
crystal will be more favourable. Then the crystal can still have more possible optical 
configurations with the same probability. On entering the INc phase small accidental 
effects will determine the optical medium observed. It is thus very well possible that 
measurements lor the optical activity in the INC phase on different samples will give 
both signs for the gyration and that the size of the effect is related to the presence 
of defects. 

We can imagine that a finite incommensurately modulated crystal is a dielectric 
medium of which the elementary excitations (Le. the electromagnetic propagation 
modes for light waves) are resonant to the dimensions of the crystal. We can compare 
this situation with a finite string of which the vibration modes have wavelengths that 
fit into the length of the string. For the crystal this means that the coherence length 
I, fits into the length d of the crystal between its (001) surfaces or other structural 
relevant boundaries, and that the phase ( Z T Z / & , )  f 6 of c""(z) is always the same 
at these surfaces. 

The description based on the complex, place-dependent order parameter of 
Kobayashi (1990) fits fairly well in the present views. We expect, however, that 
within that description symmetry breaking elements like boundary surfaces will also 
play a role. 

The physical meaning of the occurrence of a specific boundary condition in an INC 
crystal as assumed in the mesoscopic model is not yet fully understood. The presented 
model, however, turns out to also be applicable to the multidomain monoclinic phase 
IV (see Dijbtra el al 1992). A further investigation of this phase can help in the 
understanding of the role of the boundaries for the optical properties in INC phases 
as well. Also, the nature of a mesoscopic length 1, needs further analysis. It could 
be related to the fact that certain point symmetries at the boundary surfaces are 
more in favour. But we do not know whether there is one precisely defined 1, or 
not. In the description presented in this paper, the presence of such a mesoscopic 
length is essential, but a specific value is not required: there may be more than 
one different periodicities all giving a contribution to the same effect, which is linear 
and in the present parameter range to a good approximation proponional to the 
thickness of the crystal (see Dijkstra 1991). However, it is of interest to search for 
specific dependences on the wavelength of the probing light. If there is only one 
sharply defined lo, then the crystal can be viewed as a folded SolE filter, which has 
very specific transmission properties that can be detected (see Yariv and Yeh 1984). 
Dijkstra er aI (1992) have verified the validity of some aspects of this mesoscopic 
description by measurements of the different components of the gyration tensor. 

At present, the model only decribes the effect of g3% We expect that the effect 
of symmetry reducing by the boundary surfaces is more generally applicable, implying 
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that very probably gI1 and gzz can also be unequal to zero as allowed for by the 
point group 222. 
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